## Envy-free house allocation with minimum subsidy

Davin Choo, Yan Hao Ling, Warut Suksompong, Nicholas Teh, Jian Zhang



## Fair division of indivisible goods

|  | Goods |  |  |  | Agent utility |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A |  | $\otimes$ | $0_{0}$ | $\xrightarrow{\sim}$ | $\mathrm{u}_{\mathrm{i}}$ (item) |
| g e n | $\frac{8}{0}$ | 10 | 3 | 7 | $u^{\ominus}\left(\AA_{0}^{\circ}\right)=3$ |
| t | 最 | 10 | 6 | 4 | $\text { u }\left(\frac{0}{0}-\alpha\right)=6$ |

## Fair division of indivisible goods



## Fair division of indivisible goods



## Fair division of indivisible goods

|  | Goods |  |  |
| :---: | :---: | :---: | :---: |
|  | $\otimes$ |  | $\stackrel{\sim}{+}$ |
| A |  |  |  |
| g | 里 10 | 3 | 7 |
| n |  |  |  |
| t | $10$ |  | (4) |
|  | Envy-free alloc we assum |  | Var74] if lities |



There is an envy-free allocation if we allow incomplete allocation



## House allocation problem [HZ79, Zho90, AS03]

- m houses
- n agents
- $\mathrm{m} \geq \mathrm{n}$



## Envy-free relaxations for indivisible goods

- Problem: Envy-free allocation may not always exist
- Common relaxations of envy-free (EF)
- EF1 [Bud11]: Envy-free up to at most 1 item
- No longer envy if drop some good from other agent's bundle
- EFX [CKMPSW19]: Envy-free up to at most any item
- No longer envy if drop any good from other agent's bundle


## Doesn't make sense in the house allocation problem!

## Envy-free relaxations for indivisible goods

- Problem: Envy-free allocation may not always exist
- Common relaxations of envy-free (EF)
- External subsidy [HS19] $\longleftarrow$ Envy-free = Zero subsidies required!
- Total utility = Allocated good utility + given subsidy


If we give a subsidy of $\$ 3$ to $\stackrel{8}{0}$ and $\$ 0$ to



## Envy-free allocation with subsidies

- Allocation $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, where each $a_{i}$ is a distinct house
- Subsidy vector $s=\left(s_{1}, \ldots, s_{n}\right)$, where (finite) $s_{i} \geq 0$ for all $i \in[n]$
- Outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free if

$$
u_{i}\left(a_{i}\right)+s_{i} \geq u_{i}\left(a_{j}\right)+s_{j} \quad, \text { for every pair of agents } i, j \in[n]
$$



## Agent i's perspective

- I currently get $u_{i}\left(a_{i}\right)+s_{i}$
- If I swap places with agent $j$, I get $u_{i}\left(a_{j}\right)+s_{j}$
- I don't feel any happier, so I don't envy agent j





## Envy-free allocation with sheid

## Not all allocations

- Allocation $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, where eas
- Subsidy vector $s=\left(s_{1}, \ldots, s_{n}\right)$,
can be made envy-free!
- Outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free if

$$
\begin{aligned}
& u_{i}\left(a_{i}\right)+s_{i} \geq u_{i}\left(a_{j}\right)+s_{j}
\end{aligned}
$$



## Envy-free allocation with \& heid

## Not all allocations

- Allocation $\mathbf{a}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$, where eas
- Subsidy vector $s=\left(s_{1}, \ldots, s_{n}\right)$, ,
can be made envy-free!
- Outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free if

|  |  | $\mathrm{u}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}\right)+$ | $\geq u_{i}($ | $+\mathrm{s}_{\mathrm{j}}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\stackrel{\stackrel{a}{a_{1}}}{a_{1}}$ | $\mathrm{a}_{2}$ |
| $\begin{gathered} \text { Agent } \\ 1 \end{gathered}$ | 㫿 | 10 | 3 | 7 |
| $\begin{gathered} \text { Agent } \\ 2 \end{gathered}$ | 皆 | 10 | 6 | (4) |

## The 3 most relevant prior works

- [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
- There is a polynomial time algorithm to check if there is an envy-free allocation
- If such an envy-free allocation exists, output it


## The 3 most relevant prior works

- [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
- There is a polynomial time algorithm to check if there is an envy-free allocation
- If such an envy-free allocation exists, output it
- [Daniel Halpern, Nisarg Shah; 2019]
- Studied fair division of goods with subsidies + additive utilities
- Complete allocation of items without $\mathrm{m} \geq \mathrm{n}$ restriction; agents can receive 0 , or $>1$ good


## The 3 most relevant prior works

- [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
- There is a polynomial time algorithm to check if there is an envy-free allocation
- If such an envy-free allocation exists, output it
- [Daniel Halpern, Nisarg Shah; 2019]
- Studied fair division of goods with subsidies + additive utilities
- Complete allocation of items without $m \geq n$ restriction; agents can receive 0 , or $>1$ good
- Definition: Envy-freeable (Informal: "Can find subsidy vector that works")
- An allocation of goods is envy-freeable if there is a subsidy vector such that all agents are envy-free given their items' value(s) + subsidy


## The 3 most relevant prior works

- [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
- There is a polynomial time algorithm to check if there is an envy-free allocation
- If such an envy-free allocation exists, output it
- [Daniel Halpern, Nisarg Shah; 2019]
- Studied fair division of goods with subsidies + additive utilities
- Complete allocation of items without $m \geq n$ restriction; agents can receive 0 , or $>1$ good
- Definition: Envy-freeable (Informal: "Can find subsidy vector that works")
- An allocation of goods is envy-freeable if there is a subsidy vector such that all agents are envy-free given their items' value(s) + subsidy
- There is a characterization of envy-freeable allocations
- Implies that an envy-freeable allocation always exists for the house allocation problem
- Given an envy-freeable allocation, there is a polynomial time algorithm to compute the unique corresponding subsidy vector that minimizes $\sum_{i} s_{i}$


## The 3 most relevant prior works

- [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
- There is a polynomial time algorithm to check if there is an envy-free allocation
- If such an envy-free allocation exists, output it
- [Daniel Halpern, Nisarg Shah; 2019]
- Studied fair division of goods with subsidies + additive utilities
- Complete allocation of items without $m \geq n$ restriction; agents can receive 0 , or $>1$ good
- Definition: Envy-freeable (Informal: "Can find subsidy vector that works")
- An allocation of goods is envy-freeable if there is a subsidy vector such that all agents are envy-free given their items' value(s) + subsidy
- There is a characterization of envy-freeable allocations
- Implies that an envy-freeable allocation always exists for the house allocation problem
- Given an envy-freeable allocation, there is a polynomial time algorithm to compute the unique corresponding subsidy vector that minimizes $\sum_{i} s_{i}$
- [Siddharth Barman, Anand Krishna, Y. Narahari, Soumyarup Sadhukhan; 2022]
- If $(\mathbf{a}, \mathbf{s})$ is envy-free outcome, then so is $\left(\mathbf{a}_{\boldsymbol{\sigma}}, \mathbf{s}_{\boldsymbol{\sigma}}\right)$ for any permutation $\sigma$ whenever $\mathbf{a}_{\boldsymbol{\sigma}}$ is envy-freeable

[^0]
## Question

## Given a house allocation problem instance, how do we find a minimum total subsidy allocation outcome?

(Remark: 0 total subsidy = Envy-free)

- Recall from prior works:
- [GSV19] There is a polynomial time algorithm to check if an envy-free allocation exists, and output one if it exists
- [HS19] Given an envy-freeable allocation (always exists), there is a poly time algorithm to compute the unique corresponding minimum total subsidy vector
- [BKNS22] If $(\mathbf{a}, \mathbf{s})$ is envy-free outcome, then so is $\left(\mathbf{a}_{\sigma}, \mathbf{s}_{\sigma}\right)$ for any permutation $\sigma$ whenever $a_{\sigma}$ is envy-freeable


## Minimum-subsidy envy-free outcome is NP-hard

- Reduction from Vertex Cover
- $n=|V|^{4}+|V|^{3}+|E|$ agents
- $\mathrm{m}=|\mathrm{V}|^{4}+|\mathrm{V}|^{3}+|\mathrm{V}|^{2}$ houses
- Vertex cover size $\leq k \Leftrightarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

|  |  | Houses |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Special <br> (\|V| ${ }^{4}$ ) | Vertex $v_{\text {good }}$ ( $\|V\|$ for each $v$ ) | Vertex $v_{\text {bad }}$ ( $\|V\|^{2}$ for each $v$ ) |
| $\begin{aligned} & \text { 范 } \\ & \text { 范 } \end{aligned}$ | Special ( $\|V\|^{4}$ ) | 1 | $\begin{aligned} & 0 \\ & \begin{cases}1+\|V\|^{-3} & \text { if } v=w \\ 0 & \text { otherwise }\end{cases} \\ & \begin{cases}1 & \text { if } v \in\{x, y\} \\ 0 & \text { otherwise }\end{cases} \end{aligned}$ | 0 |
|  | Vertex $w$ $\left(\|V\|^{2}\right.$ for each $w \in V$ ) | 0 |  | $\begin{cases}1 & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}$ |
|  | Edge $e=\{x, y\}$ <br> ( 1 for each $e \in E$ ) | 1 |  | 0 |

- Since any subset of $n-1$ vertices is a vertex cover, may assume that $k<|V|-1$

Vertex cover size $\leq k \Rightarrow$ Total subsidy $\leq \frac{k}{|V|}$

- Suppose $\mathrm{C} \subseteq \mathrm{V}$ is a vertex cover with $|\mathrm{C}| \leq \mathrm{k}$

|  |  | $\begin{aligned} & \text { Special } \\ & \left(\|V\|^{4}\right) \end{aligned}$ | Vertex $v_{\text {good }}$ (\|V| for each $v$ ) | Vertex $v_{\text {bad }}$ $\left(\|V\|^{\text {for }}\right.$ foach $\left.v\right)$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Special ( $\|V\|^{4}$ ) | 1 | 0 | 0 |
|  | Vertex $w$ <br> ( $\|V\|^{2}$ for each $w \in V$ ) | 0 | $\begin{cases}1+\|V\|^{-3} & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}$ | $\begin{cases}1 & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}$ |
|  | Edge $e=\{x, y\}$ <br> (1 for each $e \in E$ ) | 1 | $\begin{cases}1 & \text { if } v \in\{x, y\} \\ 0 & \text { otherwise }\end{cases}$ | 0 |

Vertex cover size $\leq k \Rightarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose $\mathrm{C} \subseteq \mathrm{V}$ is a vertex cover with $|\mathrm{C}| \leq \mathrm{k}$
- Proposed allocation
- Assign each special agent to special house

|  |  | Houses <br>  <br>  <br> Special <br> $\left(\|V\|^{4}\right)$ | Vertex $v_{\text {good }}$ <br> $(\|V\|$ for each $v)$ |
| :--- | :--- | :--- | :--- | | Vertex $v_{\text {bad }}$ |
| :--- |
| $\left(\|V\|^{2}\right.$ for each $\left.v\right)$ |

- Assign each vertex agent of type $v$ to vertex house $\mathrm{v}_{\text {bad }}$

Vertex cover size $\leq k \Rightarrow$ Total subsidy $\leq \frac{k}{|V|}$

- Suppose $\mathrm{C} \subseteq \mathrm{V}$ is a vertex cover with $|\mathrm{C}| \leq \mathrm{k}$
- Proposed allocation
- Assign each special agent to special house

|  |  | Houses |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Special } \\ & \left(\|V\|^{4}\right) \end{aligned}$ | Vertex $v_{\text {good }}$ ( $\|V\|$ for each $v$ ) | $\begin{aligned} & \text { Vertex } v_{\text {bad }} \\ & \left(\|V\|^{2} \text { for each } v\right) \end{aligned}$ |
| $\begin{aligned} & \text { n } \\ & \text { 荡 } \end{aligned}$ | Special ( $\|V\|^{4}$ ) | 1 | $\begin{aligned} & \begin{cases}1+\|V\|^{-3} & \text { if } v=w \\ 0 & \text { otherwise }\end{cases} \\ & \begin{cases}1 & \text { if } v \in\{x, y\} \\ 0 & \text { otherwise }\end{cases} \end{aligned}$ | 0 |
|  | Vertex w ( $\|V\|^{2}$ for each $w \in V$ ) | 0 |  | $\begin{cases}1 & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}$ |
|  | $\begin{aligned} & \text { Edge } e=\{x, y\} \\ & (1 \text { for each } e \in E) \end{aligned}$ | 1 |  | 0 |

- Assign each vertex agent of type $v$ to vertex house $\mathrm{v}_{\text {bad }}$
- For each edge agent corresponding to edge $\{x, y\}$, at least x or y must be in C
- If $\mathrm{x} \in \mathrm{C}$, assign edge agent $\{x, y\}$ to $\mathrm{x}_{\text {good }}$
- If $\mathrm{y} \in \mathrm{C}$, assign edge agent $\{x, y\}$ to $\mathrm{y}_{\mathrm{good}}$

Always possible since there are |V|

- If both $x$ and $y$ are in $C$, assign arbitrarily good houses for each vertex

Observation: In this allocation, only vertex agents v can possibly envy edge agents $\{\mathrm{v}, \cdot\}$. No one else envies anyone else.

Vertex cover size $\leq k \Rightarrow$ Total subsidy $\leq \frac{k}{|V|}$

- Suppose $\mathrm{C} \subseteq \mathrm{V}$ is a vertex cover with $|\mathrm{C}| \leq \mathrm{k}$
- Proposed allocation
- Assign each special agent to special house

|  |  | Houses |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Special $\left(\|V\|^{4}\right)$ | Vertex $v_{\text {good }}$ ( $\|V\|$ for each $v$ ) | $\begin{aligned} & \text { Vertex } v_{\text {bad }} \\ & \left(\|V\|^{2} \text { for each } v\right) \end{aligned}$ |
| $\begin{aligned} & \text { n } \\ & \text { 荡 } \end{aligned}$ | Special ( $\|V\|^{4}$ ) | 1 | $\begin{aligned} & \begin{cases}1+\|V\|^{-3} & \text { if } v=w \\ 0 & \text { otherwise }\end{cases} \\ & \begin{cases}1 & \text { if } v \in\{x, y\} \\ 0 & \text { otherwise }\end{cases} \end{aligned}$ | 0 |
|  | Vertex w ( $\|V\|^{2}$ for each $w \in V$ ) | 0 |  | $\begin{cases}1 & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}$ |
|  | $\begin{aligned} & \text { Edge } e=\{x, y\} \\ & (1 \text { for each } e \in E) \end{aligned}$ | 1 |  | 0 |

- Assign each vertex agent of type $v$ to vertex house $\mathrm{v}_{\text {bad }}$
- For each edge agent corresponding to edge $\{x, y\}$, at least x or y must be in C
- If $\mathrm{x} \in \mathrm{C}$, assign edge agent $\{x, y\}$ to $\mathrm{x}_{\text {good }}$
- If $\mathrm{y} \in \mathrm{C}$, assign edge agent $\{x, y\}$ to $\mathrm{y}_{\mathrm{gooo}}$

Always possible since there are |V|

- If both $x$ and $y$ are in $C$, assign arbitrarily good houses for each vertex
- Proposed subsidy
- If $v \in C$, give $|V|^{-3}$ to each vertex agent of type $v$
- Give 0 to everyone else

$$
\sum_{i} s_{i}=\frac{|V|^{2} \cdot|C|}{|V|^{3}}=\frac{|C|}{|V|} \leq \frac{k}{|V|}
$$

Observation: This subsidy of $|\mathrm{V}|^{-3}$ does not create new envy since $1>0+|\mathrm{V}|^{-3}$

Vertex cover size $\leq k \Leftarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free outcome with $\sum_{i} s_{i} \leq \frac{\mathrm{k}}{|V|}$
- Define $T=\left\{v \in V: \exists\right.$ edge agent receiving house of type $\mathrm{v}_{\text {good }}$ in $\left.\mathbf{a}\right\}$
- Claim 1: $T$ is a vertex cover
- Claim 2: $|\mathrm{T}| \leq \mathrm{k}$



## Vertex cover size $\leq k \Leftarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free outcome with $\sum_{i} s_{i} \leq \frac{\mathrm{k}}{|V|}$
- Define $T=\left\{v \in V: \exists\right.$ edge agent receiving house of type $v_{\text {good }}$ in $\left.a\right\}$
- Claim 1: $T$ is a vertex cover
$\mathrm{n}=|\mathrm{V}|^{4}+|\mathrm{V}|^{3}+|\mathrm{E}|$ agents
- $\mathrm{n}=|\mathrm{V}|^{4}+|\mathrm{V}|^{3}+|\mathrm{E}|>|\mathrm{V}|^{3}+|\mathrm{V}|^{2}=m-|V|^{4}$
- Since $n>m-|V|^{4}$, by pigeonhole principle, some special house is allocated
- If special agent not assigned special house, need to give subsidy of 1

|  |  | Houses |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Special <br> (\|V| ${ }^{4}$ ) | Vertex $v_{\text {good }}$ ( $\|V\|$ for each $v$ ) | Vertex $v_{\text {bad }}$ $\left(\|V\|^{2}\right.$ for each $v$ ) |
| $\begin{aligned} & \text { n } \\ & \frac{1}{0} \\ & \text { 菦 } \end{aligned}$ | Special ( $\|V\|^{4}$ ) | 1 | 0 | 0 |
|  | Vertex $w$ ( $\|V\|^{2}$ for each $w \in V$ ) | 0 | $\begin{cases}1+\|V\|^{-3} & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}$ | $\begin{cases}1 & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}$ |
|  | Edge $e=\{x, y\}$ <br> ( 1 for each $e \in E$ ) | 1 | $\begin{cases}1 & \text { if } v \in\{x, y\} \\ 0 & \text { otherwise }\end{cases}$ | 0 |

## Vertex cover size $\leq k \Leftarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free outcome with $\sum_{i} s_{i} \leq \frac{\mathrm{k}}{|V|}$
- Define $T=\left\{v \in V: \exists\right.$ edge agent receiving house of type $v_{\text {good }}$ in $\left.\mathbf{a}\right\}$
- Claim 1: $T$ is a vertex cover
- $\mathrm{n}=|\mathrm{V}|^{4}+|\mathrm{V}|^{3}+|E|>|V|^{3}+|V|^{2}=m-|V|^{4}$
- Since $n>m-|V|^{4}$, by pigeonhole principle, some special house is allocated
- If special agent not assigned special house, need to give subsidy of 1
- $\mathrm{k}<|\mathrm{V}|-1 \Rightarrow \sum_{i} s_{i} \leq \frac{\mathrm{k}}{|V|}<\frac{|V|-1}{|V|}<1 \Rightarrow$ Any agent's $s_{\mathrm{i}}$ subsidy is $<1$
- So, it must be the case that all special agents are assigned the special houses

Vertex cover size $\leq k \Leftarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free outcome with $\sum_{i} s_{i} \leq \frac{\mathrm{k}}{|V|}$
- Define $T=\left\{v \in V: \exists\right.$ edge agent receiving house of type $\mathrm{v}_{\text {good }}$ in $\left.\mathbf{a}\right\}$
- Claim 1: T is a vertex cover
- All special agents are assigned all the special houses

|  |  | Houses |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Special <br> (\|V| ${ }^{4}$ ) | Vertex $v_{\text {good }}$ ( $\|V\|$ for each $v$ ) | Vertex $v_{\text {bad }}$ ( $\|V\|^{2}$ for each $v$ ) |
|  | Special ( $\|V\|^{4}$ ) | 1 | 0 | 0 |
|  | Vertex w ( $\|V\|^{2}$ for each $w \in V$ ) | 0 | $\begin{aligned} & \begin{cases}1+\|V\|^{-3} & \text { if } v=w \\ 0 & \text { otherwise }\end{cases} \\ & \begin{cases}1 & \text { if } v \in\{x, y\} \\ 0 & \text { otherwise }\end{cases} \end{aligned}$ | $\begin{cases}1 & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}$ |
|  | Edge $e=\{x, y\}$ <br> ( 1 for each $e \in E$ ) | 1 |  | 0 |

## Vertex cover size $\leq k \Leftarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free outcome with $\sum_{i} s_{i} \leq \frac{\mathrm{k}}{|V|}$
- Define $T=\left\{v \in V: \exists\right.$ edge agent receiving house of type $v_{\text {good }}$ in $\left.\mathbf{a}\right\}$
- Claim 1: T is a vertex cover
- All special agents are assigned all the special houses
- For edge agent $\{x, y\}$ to require $<1$ subsidy, must assign $\mathrm{x}_{\text {good }}$ or $\mathrm{y}_{\text {good }}$
- This means that $T \cap\{x, y\} \neq \emptyset$ for any edge $\{x, y\} \in E$
- That is, T is a vertex cover

|  |  | Houses |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Special <br> (\|V| ${ }^{4}$ ) | Vertex $v_{\text {good }}$ ( $\|V\|$ for each $v$ ) | Vertex $v_{\text {bad }}$ ( $\|V\|^{2}$ for each $v$ ) |
| $\begin{aligned} & \text { n } \\ & \text { 莯 } \end{aligned}$ | Special ( $\|V\|^{4}$ ) | 1 | $\begin{aligned} & \begin{cases}1+\|V\|^{-3} & \text { if } v=w \\ 0 & \text { otherwise }\end{cases} \\ & \begin{cases}1 & \text { if } v \in\{x, y\} \\ 0 & \text { otherwise }\end{cases} \end{aligned}$ | 0 |
|  | Vertex w $\left(\|V\|^{2}\right.$ for each $w \in V$ ) | 0 |  | $\begin{cases}1 & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}$ |
|  | Edge $e=\{x, y\}$ <br> (1 for each $e \in E$ ) | 1 |  | 0 |

## Vertex cover size $\leq k \Leftarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free outcome with $\sum_{i} s_{i} \leq \frac{\mathrm{k}}{|\mathrm{V}|}$
- Define $T=\left\{v \in V: \exists\right.$ edge agent receiving house of type $v_{\text {good }}$ in $\left.\mathbf{a}\right\}$
- Claim 1: $T$ is a vertex cover
- Claim 2: $|\mathrm{T}| \leq \mathrm{k}$
- For any $v \in T$,
- There is some edge agent receiving $\mathrm{v}_{\mathrm{good}}\left(\mathrm{defn}^{n}\right.$ of $\left.T\right)$



## Vertex cover size $\leq k \Leftarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free outcome with $\sum_{i} s_{i} \leq \frac{\mathrm{k}}{|V|}$
- Define $T=\left\{v \in V: \exists\right.$ edge agent receiving house of type $v_{\text {good }}$ in $\left.\mathbf{a}\right\}$
- Claim 1: $T$ is a vertex cover
- Claim 2: $|\mathrm{T}| \leq \mathrm{k}$
- For any $v \in T$,
- There is some edge agent receiving $v_{\text {good }}\left(d^{n} f^{n}\right.$ of $\left.T\right)$
- Need to give vertex agent of type $v$ either $v_{\text {good }}$ or $v_{\text {bad }}$
- If assigned $\mathrm{v}_{\text {bad }}$, need to also give subsidy of $|\mathrm{V}|^{-3}$


## Vertex cover size $\leq k \Leftarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free outcome with $\sum_{i} s_{i} \leq \frac{\mathrm{k}}{|V|}$
- Define $T=\left\{v \in V: \exists\right.$ edge agent receiving house of type $\mathrm{v}_{\text {good }}$ in $\left.\mathbf{a}\right\}$
- Claim 1: T is a vertex cover
- Claim 2: $|\mathrm{T}| \leq \mathrm{k}$
- For any $\mathrm{v} \in \mathrm{T}$,
- There is some edge agent receiving $v_{\text {good }}\left(d^{n} f^{n}\right.$ of $\left.T\right)$

- Need to give vertex agent of type $v$ either $v_{\text {good }}$ or $v_{\text {bad }}$
- If assigned $\mathrm{v}_{\mathrm{bad}}$, need to also give subsidy of $|\mathrm{V}|^{-3}$
- There are $|\mathrm{V}|^{2}$ vertex agents of type v but only $|\mathrm{V}| \mathrm{v}_{\text {good }}$ houses (some are already taken)
- So, total subsidy is at least $|T| \cdot\left(|V|^{2}-|V|\right) \cdot|V|^{-3}$

Vertex cover size $\leq k \Leftarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free outcome with $\sum_{i} s_{i} \leq \frac{\mathrm{k}}{|V|}$
- Define $T=\left\{v \in V: \exists\right.$ edge agent receiving house of type $\mathrm{v}_{\text {good }}$ in $\left.\mathbf{a}\right\}$
- Claim 1: $T$ is a vertex cover
- Claim 2: $|\mathrm{T}| \leq \mathrm{k}$
- Total subsidy is at least $|T| \cdot\left(|V|^{2}-|V|\right) \cdot|V|^{-3}$


## Vertex cover size $\leq k \Leftarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

- Suppose outcome ( $\mathbf{a}, \mathbf{s}$ ) is envy-free outcome with $\sum_{i} s_{i} \leq \frac{\mathrm{k}}{|V|}$
- Define $T=\left\{v \in V: \exists\right.$ edge agent receiving house of type $\mathrm{v}_{\mathrm{good}}$ in $\left.\mathbf{a}\right\}$
- Claim 1: $T$ is a vertex cover
- Claim 2: $|\mathrm{T}| \leq \mathrm{k}$
- Total subsidy is at least $|T| \cdot\left(|V|^{2}-|V|\right) \cdot|V|^{-3}$
- Suppose, for a contradiction, that $|T| \geq k+1$. Then,

$$
\sum_{i} s_{i} \geq \frac{|T| \cdot\left(|V|^{2}-|V|\right)}{|V|^{3}} \geq \frac{(k+1) \cdot\left(|V|^{2}-|V|\right)}{|V|^{3}}=\frac{1}{|V|} \cdot\left(k+1-\frac{k+1}{|V|}\right)>\frac{k}{|V|}
$$

- Contradiction, so $|T| \leq k$


## Minimum-subsidy envy-free outcome is NP-hard

- Reduction from Vertex Cover
- Vertex cover size $\leq \mathrm{k} \Leftrightarrow$ Total subsidy $\leq \frac{\mathrm{k}}{|V|}$

|  |  | Houses |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Special (\|V| ${ }^{4}$ ) | Vertex $v_{\text {good }}$ ( $\|V\|$ for each $v$ ) | Vertex $v_{\text {bad }}$ $\left(\|V\|^{2}\right.$ for each $v$ ) |
|  | Special ( $\|V\|^{4}$ ) | 1 | f | 0 |
|  | Vertex $w$ $\left(\|V\|^{2}\right.$ for each $w \in V$ ) | 0 | $\begin{aligned} & \begin{cases}1+\|V\|^{-3} & \text { if } v=w \\ 0 & \text { otherwise }\end{cases} \\ & \begin{cases}1 & \text { if } v \in\{x, y\} \\ 0 & \text { otherwise }\end{cases} \end{aligned}$ | $\begin{cases}1 & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}$ |
|  | Edge $e=\{x, y\}$ <br> ( 1 for each $e \in E$ ) | 1 |  | 0 |

- Modifying $\hat{u}_{i}(h)=u_{i}(h)+c_{i}$, for some $c_{i} \geq 0$, does not affect envy-freeness
- So, the NP-hardness argument holds even for normalized utilities where we have the same value of $\sum_{h} u_{i}(h)$ for all agents, after accounting for the $c_{i}$ 's


## Two tractable cases

1) Identical valuations / utility functions
2) Similar number of agents and houses

## Two tractable cases

## 1) Identical valuations / utility functions

- $u_{i}($ any item $)=u_{j}($ same item $)$ for all $i, j \in[n]$
- Without loss of generality, by relabelling,
- $u\left(h_{1}\right) \geq u\left(h_{2}\right) \geq \ldots \geq u\left(h_{m}\right)$
- Agent $i$ is assigned the $i^{\text {th }}$ most valuable house within the subset of assigned houses

2) Similar number of agents and houses

## Tractable case 1: Identical valuations

- Observation 1: Subsidy required is exactly the sum of value differences to the most valuable assigned house



## Tractable case 1: Identical valuations

- Observation 1: Subsidy required is exactly the sum of value differences to the most valuable assigned house
- Observation 2: For any fixed "most valuable assigned house", we should always assign the contiguous $n-1$ houses right after it


Envy-free if agent 2 given subsidy of 8

## Tractable case 1: Identical valuations

- Observation 1: Subsidy required is exactly the sum of value differences to the most valuable assigned house
- Observation 2: For any fixed "most valuable assigned house", we should always assign the contiguous n -1 houses right after it
- Polynomial time algorithm to compute minimum subsidy allocation

1. Compute prefix sums of values so we can compute required subsidy
2. Check through all $m$-n "most valuable assigned house"
3. Output the best option

## Two tractable cases

1) Identical valuations / utility functions
2) Similar number of agents and houses

## Two tractable cases

1) Identical valuations / utility functions
2) Similar number of agents and houses

- $m=n+c$, for some constant $c \geq 0$
- Since $\binom{m}{n}=\binom{n+c}{n}=\binom{n+c}{c} \in O\left(n^{c}\right)$ is polynomial for constant $c \geq 0$, suffice to show that the case of $\mathrm{m}=\mathrm{n}$ can be solved in polynomial time


## Tractable case 2: $\mathrm{m}=\mathrm{n}$

- Consider weighted complete bipartite graph G
- Left partite: Agents
- Right partite: Houses
- Edge weights: $u_{i}\left(h_{j}\right)$, agent i's utility for house $j$
- A perfect matching corresponds to an allocation



## Tractable case 2: $\mathrm{m}=\mathrm{n}$

- Consider weighted complete bipartite graph G
- [HS19] Maximum weight perfect matching in G $\Leftrightarrow$ Envy-freeable allocation a
- Suppose a can be made envy-free with minimum subsidy vector $s$


## Tractable case $2: \mathrm{m}=\mathrm{n}$

- Consider weighted complete bipartite graph G
- [HS19] Maximum weight perfect matching in G $\Leftrightarrow$ Envy-freeable allocation a
- Suppose a can be made envy-free with minimum subsidy vector $s$



## Tractable case 2: $\mathrm{m}=\mathrm{n}$

- Consider weighted complete bipartite graph G
- [HS19] Maximum weight perfect matching in G $\Leftrightarrow$ Envy-freeable allocation a
- Suppose a can be made envy-free with minimum subsidy vector $s$
- Since $m=n$, any envy-free allocation is a permutation of a
- [BKNS22] $\left(\mathbf{a}_{\boldsymbol{\sigma}}, \mathbf{s}_{\boldsymbol{\sigma}}\right)$ is also envy-free for permutation $\sigma$ if $\mathbf{a}_{\boldsymbol{\sigma}}$ is envy-freeable
- Since $\mathbf{s}$ and $\mathbf{s}_{\boldsymbol{\sigma}}$ are just permutations, the total subsidy is the same


## Tractable case 2: $\mathrm{m}=\mathrm{n}$

- Consider weighted complete bipartite graph G
- [HS19] Maximum weight perfect matching in G $\Leftrightarrow$ Envy-freeable allocation a
- Suppose a can be made envy-free with minimum subsidy vector $s$
- Since $m=n$, any envy-free allocation is a permutation of a
- [BKNS22] $\left(\mathbf{a}_{\boldsymbol{\sigma}}, \mathbf{s}_{\boldsymbol{\sigma}}\right)$ is also envy-free for permutation $\sigma$ if $\mathbf{a}_{\boldsymbol{\sigma}}$ is envy-freeable
- Since $\mathbf{s}$ and $\mathbf{s}_{\boldsymbol{\sigma}}$ are just permutations, the total subsidy is the same
- Polynomial time algorithm to compute minimum subsidy allocation

1. Compute maximum weight perfect matching in $G$ to get allocation a
2. Compute corresponding minimum total subsidy vector $\mathbf{s}$ in polynomial time [HS19]
3. Output $(\mathbf{a}, \mathbf{s})$

## Conclusion and future directions

- NP-hard in general to compute minimum subsidy envy-free allocation
- 2 tractable cases
- All agents have identical utilities
- Similar number of houses and agents ( $m=n+c$, for constant $c \geq 0$ )


## Conclusion and future directions

- NP-hard in general to compute minimum subsidy envy-free allocation
- 2 tractable cases
- All agents have identical utilities
- Similar number of houses and agents ( $m=n+c$, for constant $c \geq 0$ )
- Conjecture: Polynomial time possible if identical preferences


Distinct utility functions but same preference ordering

Maybe "contiguous" observation also holds?

## Conclusion and future directions

- NP-hard in general to compute minimum subsidy envy-free allocation
- 2 tractable cases
- All agents have identical utilities
- Similar number of houses and agents ( $m=n+c$, for constant $c \geq 0$ )
- Conjecture: Polynomial time possible if identical preferences
- Design approximation algorithms or prove hardness?
- Other notions of fairness? Pareto efficiency?
- Strategic behavior?
- No deterministic mechanism can be strategy-proof (See Example 5.1 in paper)

Lying about own utility function helps

## BACK UP SLIDES

## Polynomial time algorithm for computing minimum subsidy vector

- Given allocation $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, compute envy graph $G_{a}$
- Vertices correspond to agents
- Edges are directed and weighted
- Weight of edge $i \rightarrow j$ is $u_{i}\left(a_{j}\right)-u_{i}\left(a_{i}\right)$, i.e. how much agent $i$ envies agent $j$ 's allocation
- Note that edge weights can be negative
- Define $\ell(i, j)$ as maximum weight of any path in $G_{a}$ starting from $i$ and ending at $j$
- Define $\ell(i)=\max _{j \in[n]} \ell(i, j)$
- [HS19, Theorem 2] $\mathbf{s}=(\ell(1), \ldots, \ell(n))$ is the unique minimum total subsidy vector


## Characterization of envy-freeable allocations

- [HS19, Theorem 1] The following are equivalent:
- Allocation $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is envy-freeable
- Allocation a maximizes utilitarian welfare across all reassignments

$$
\sum_{i} u_{i}\left(a_{i}\right) \geq \sum_{i} u_{i}\left(a_{\sigma(i)}\right), \text { for any permutation } \sigma
$$

- Envy graph $\mathrm{G}_{\mathrm{a}}$ has no positive-weight cycles

> For house allocation $(m=n)$, the second condition corresponds to maximum weight perfect matching


[^0]:    [GSV19] Jiarui Gan, Warut Suksompong, Alexandros A Voudouris. Envy-freeness in house allocation problems. Mathematical Social Sciences, 2019

