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Fair division of indivisible goods

Envy-free allocation [Fol67, Var74] if 
we assume additive utilities
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[Fol67] Duncan K. Foley. Resource allocation and the public sector. Yale Economics Essays, 1967.
[Var74] Hal R. Varian. Equity, envy, and efficiency. Journal of Economic Theory, 1974.



Fair division of indivisible goods

Envy-free allocation [Fol67, Var74] if 
we assume additive utilities

Envy-free allocation may not exist in general
(whoever does NOT get ball will be envious)
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Fair division of indivisible goods

10 2 3

10 3 2

Envy-free allocation [Fol67, Var74] if 
we assume additive utilities

There is an envy-free allocation if we allow 
incomplete allocation
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10 3 7

10 6 4

u ( ) = 6 + 4 = 10 = u ( )
[Fol67] Duncan K. Foley. Resource allocation and the public sector. Yale Economics Essays, 1967.
[Var74] Hal R. Varian. Equity, envy, and efficiency. Journal of Economic Theory, 1974.
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House allocation problem [HZ79, Zho90, AS03]

• m houses
• n agents
• m ≥ n
• Each agent gets exactly one house
• Complete allocation when m = n
• Incomplete allocation when  m > n
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An incomplete envy-free allocation 
since m = 3 > 2 = n

[HZ79] Aanund Hylland,Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political Economy, 1979.
[Zho90] Lin Zhou. On a conjecture by Gale about one-sided matching problems. Journal of Economic Theory, 1990.
[AS03] Atila Abdulkadiroğlu, Tayfun Sönmez. Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica, 2003.
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Envy-free relaxations for indivisible goods

• Problem: Envy-free allocation may not always exist
• Common relaxations of envy-free (EF)
• EF1 [Bud11]: Envy-free up to at most 1 item

• No longer envy if drop some good from other agent’s bundle
• EFX [CKMPSW19]: Envy-free up to at most any item

• No longer envy if drop any good from other agent’s bundle

Doesn’t make sense in the house 
allocation problem!

[Bud11] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. Journal of Political Economy, 2011
[CKMPSW19] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel Procaccia, Nisarg Shah, Junxing Wang. The unreasonable fairness of maximum Nash welfare. ACM Transactions on Economics and 
Computation (TEAC), 2019



Envy-free relaxations for indivisible goods

• Problem: Envy-free allocation may not always exist
• Common relaxations of envy-free (EF)
• External subsidy [HS19]

• Total utility = Allocated good utility + given subsidy
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If we give a subsidy of $3 to        and $0 to         :

u       (             ) + 3 = 10 = u       (             ) + 0

u       (             ) + 0 = 10 ≥ 7 = u       (             ) + 3

Envy-free = Zero subsidies required!

[HS19] Daniel Halpern, Nisarg Shah. Fair division with subsidy. Symposium on Algorithmic Game Theory (SAGT), 2019



Envy-free allocation with subsidies

• Allocation a = (a1, …, an) , where each ai is a distinct house
• Subsidy vector s = (s1, …, sn), where (finite) si ≥ 0 for all i ∈ [n]
• Outcome (a, s) is envy-free if

ui(ai) + si ≥ ui(aj) + sj , for every pair of agents i, j ∈ [n]

Agent i’s perspective
• I currently get ui(ai) + si 
• If I swap places with agent j, I get ui(aj) + sj
• I don’t feel any happier, so I don’t envy agent j

If we give a subsidy of $3 to        and $0 to         :

u       (             ) + 3 = 10 = u       (             ) + 0

u       (             ) + 0 = 10 ≥ 7 = u       (             ) + 3



Envy-free allocation with subsidies

• Allocation a = (a1, …, an) , where each ai is a distinct house
• Subsidy vector s = (s1, …, sn), where si ≥ 0 for all i ∈ [n]
• Outcome (a, s) is envy-free if

ui(ai) + si ≥ ui(aj) + sj , for every pair of agents i, j ∈ [n]

Not all allocations 
can be made 

envy-free!
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“I envy you by 4”

“I envy you by 2”



Envy-free allocation with subsidies

• Allocation a = (a1, …, an) , where each ai is a distinct house
• Subsidy vector s = (s1, …, sn), where si ≥ 0 for all i ∈ [n]
• Outcome (a, s) is envy-free if

ui(ai) + si ≥ ui(aj) + sj , for every pair of agents i, j ∈ [n]

Not all allocations 
can be made 

envy-free!

3 + s1 = u1(a1) + s1 ≥ u1(a2) + s2 = 7 + s2
4 + s2 = u2(a2) + s2 ≥ u2(a1) + s1 = 6 + s1

Since 3 + s1 ≥ 7 + s2 and 4 + s2 ≥ 6 + s1, we see that
s1 ≥ (7-3) + s2 ≥ (7-3) + (6-4) + s1 = 6 + s1

i.e. s1 ≥ 6 + s1 ⇔ 0 ≥ 6 (Impossible)

a1 a2

Agent 
1

Agent 
2
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10 6 4



The 3 most relevant prior works

• [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
• There is a polynomial time algorithm to check if there is an envy-free allocation
• If such an envy-free allocation exists, output it

• [Daniel Halpern, Nisarg Shah; 2019]
• Studied fair division of goods with subsidies + additive utilities

• Complete allocation of items without m ≥ n restriction; agents can receive 0, or >1 good
• Definition: Envy-freeable (Informal: “Can find subsidy vector that works”)

• An allocation of goods is envy-freeable if there is a subsidy vector such that all agents are envy-free given their 
items' value(s) + subsidy

• There is a characterization of envy-freeable allocations
• Implies that an envy-freeable allocation always exists for the house allocation problem

• Given an envy-freeable allocation, there is a polynomial time algorithm to compute the unique 
corresponding subsidy vector that minimizes ∑i si

• [Siddharth Barman, Anand Krishna, Y. Narahari, Soumyarup Sadhukhan; 2022]
• If (a, s) is envy-free outcome, then so is (aσ, sσ) for any permutation σ whenever aσ is envy-freeable

[GSV19] Jiarui Gan, Warut Suksompong, Alexandros A Voudouris. Envy-freeness in house allocation problems. Mathematical Social Sciences, 2019.
[HS19] Daniel Halpern, Nisarg Shah. Fair division with subsidy. Symposium on Algorithmic Game Theory (SAGT), 2019
[BKNS22] Siddharth Barman, Anand Krishna, Y. Narahari, Soumyarup Sadhukhan. Achieving Envy-Freeness with Limited Subsidies under Dichotomous Valuations. International Joint Conference on Artificial 
Intelligence (IJCAI), 2022
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Question

Given a house allocation problem instance, how do we find a 
minimum total subsidy allocation outcome?

(Remark: 0 total subsidy = Envy-free)

• Recall from prior works:
• [GSV19] There is a polynomial time algorithm to check if an envy-free allocation 

exists, and output one if it exists
• [HS19] Given an envy-freeable allocation (always exists), there is a poly time 

algorithm to compute the unique corresponding minimum total subsidy vector
• [BKNS22] If (a, s) is envy-free outcome, then so is (aσ, sσ) for any permutation σ 

whenever aσ is envy-freeable

[GSV19] Jiarui Gan, Warut Suksompong, Alexandros A Voudouris. Envy-freeness in house allocation problems. Mathematical Social Sciences, 2019.
[HS19] Daniel Halpern, Nisarg Shah. Fair division with subsidy. Symposium on Algorithmic Game Theory (SAGT), 2019
[BKNS22] Siddharth Barman, Anand Krishna, Y. Narahari, Soumyarup Sadhukhan. Achieving Envy-Freeness with Limited Subsidies under Dichotomous Valuations. International Joint Conference on Artificial 
Intelligence (IJCAI), 2022



Minimum-subsidy envy-free outcome is NP-hard

• Reduction from Vertex Cover
• n = |V|4 + |V|3 + |E| agents
• m = |V|4 + |V|3 + |V|2 houses
• Vertex cover size ≤ k ⇔ Total subsidy ≤ !

|#|

• Since any subset of n-1 vertices is a vertex cover, may assume that k < |V| – 1



Vertex cover size ≤ k ⇒ Total subsidy ≤ !
|#|

• Suppose C ⊆ V is a vertex cover with |C| ≤ k
• Proposed allocation
• Assign each special agent to special house
• Assign each vertex agent of type v to vertex house vbad
• For each edge agent corresponding to edge {x, y}, at least x or y must be in C

• If x ∈ C, assign edge agent {x, y} to xgood
• If y ∈ C, assign edge agent {x, y} to ygood
• If both x and y are in C, assign arbitrarily

• Proposed subsidy
• If v ∈ C, give |V|-3 to each vertex agent of type v
• Give 0 to everyone else
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• Suppose C ⊆ V is a vertex cover with |C| ≤ k
• Proposed allocation
• Assign each special agent to special house
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Vertex cover size ≤ k ⇒ Total subsidy ≤ !
|#|

• Suppose C ⊆ V is a vertex cover with |C| ≤ k
• Proposed allocation
• Assign each special agent to special house
• Assign each vertex agent of type v to vertex house vbad
• For each edge agent corresponding to edge 𝑥, 𝑦 , at least x or y must be in C

• If x ∈ C, assign edge agent 𝑥, 𝑦  to xgood
• If y ∈ C, assign edge agent 𝑥, 𝑦  to ygood
• If both x and y are in C, assign arbitrarily

• Proposed subsidy
• If v ∈ C, give |V|-3 to each vertex agent of type v
• Give 0 to everyone else

Always possible since there are |V| 
good houses for each vertex

Observation: In this allocation, only vertex agents v can possibly 
envy edge agents {v, ⋅}. No one else envies anyone else.



Vertex cover size ≤ k ⇒ Total subsidy ≤ !
|#|

• Suppose C ⊆ V is a vertex cover with |C| ≤ k
• Proposed allocation
• Assign each special agent to special house
• Assign each vertex agent of type v to vertex house vbad
• For each edge agent corresponding to edge 𝑥, 𝑦 , at least x or y must be in C

• If x ∈ C, assign edge agent 𝑥, 𝑦  to xgood
• If y ∈ C, assign edge agent 𝑥, 𝑦  to ygood
• If both x and y are in C, assign arbitrarily

• Proposed subsidy
• If v ∈ C, give |V|-3 to each vertex agent of type v
• Give 0 to everyone else

Always possible since there are |V| 
good houses for each vertex

!
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𝑠! =
𝑉 " ⋅ 𝐶
𝑉 # =

𝐶
|𝑉|

≤
𝑘
𝑉

Observation: This subsidy of 
|V|-3 does not create new 

envy since 1 > 0 + |V|-3



Vertex cover size ≤ k ⇐ Total subsidy ≤ !
|#|

• Suppose outcome (a, s) is envy-free outcome with ∑& 𝑠& ≤
'
|)|
	

• Define T = { v ∈ V : ∃ edge agent receiving house of type vgood in a }
• Claim 1: T is a vertex cover
• Claim 2: |T| ≤ k

To show



Vertex cover size ≤ k ⇐ Total subsidy ≤ !
|#|

• Suppose outcome (a, s) is envy-free outcome with ∑& 𝑠& ≤
'
|)|
	

• Define T = { v ∈ V : ∃ edge agent receiving house of type vgood in a }
• Claim 1: T is a vertex cover
• n = |V|4 + |V|3 + |E| > |V|3 + |V|2 = m - |V|4

• Since n > m - |V|4, by pigeonhole principle, some special house is allocated
• If special agent not assigned special house, need to give subsidy of 1



Vertex cover size ≤ k ⇐ Total subsidy ≤ !
|#|

• Suppose outcome (a, s) is envy-free outcome with ∑& 𝑠& ≤
'
|)|
	

• Define T = { v ∈ V : ∃ edge agent receiving house of type vgood in a }
• Claim 1: T is a vertex cover
• n = |V|4 + |V|3 + |E| > |V|3 + |V|2 = m - |V|4

• Since n > m - |V|4, by pigeonhole principle, some special house is allocated
• If special agent not assigned special house, need to give subsidy of 1

• k < |V| - 1 ⇒ ∑$ 𝑠$ ≤
!
|#|
< # %&

#
< 1 ⇒ Any agent’s si subsidy is < 1

• So, it must be the case that all special agents are assigned the special houses
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• Suppose outcome (a, s) is envy-free outcome with ∑& 𝑠& ≤
'
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• Define T = { v ∈ V : ∃ edge agent receiving house of type vgood in a }
• Claim 1: T is a vertex cover
• All special agents are assigned all the special houses
• For edge agent 𝑥, 𝑦 	to require < 1 subsidy, must assign xgood or ygood

• This means that 𝑇 ∩ 𝑥, 𝑦 ≠ ∅ for any edge 𝑥, 𝑦 ∈ 𝐸
• That is, T is a vertex cover



Vertex cover size ≤ k ⇐ Total subsidy ≤ !
|#|

• Suppose outcome (a, s) is envy-free outcome with ∑& 𝑠& ≤
'
|)|
	

• Define T = { v ∈ V : ∃ edge agent receiving house of type vgood in a }
• Claim 1: T is a vertex cover
• All special agents are assigned all the special houses
• For edge agent 𝑥, 𝑦 	to require < 1 subsidy, must assign xgood or ygood

• This means that 𝑇 ∩ 𝑥, 𝑦 ≠ ∅ for any edge 𝑥, 𝑦 ∈ 𝐸
• That is, T is a vertex cover



Vertex cover size ≤ k ⇐ Total subsidy ≤ !
|#|

• Suppose outcome (a, s) is envy-free outcome with ∑& 𝑠& ≤
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• Define T = { v ∈ V : ∃ edge agent receiving house of type vgood in a }
• Claim 1: T is a vertex cover
• Claim 2: |T| ≤ k
• For any v ∈ T,

• There is some edge agent receiving vgood (defn of T)
• Need to give vertex agent of type v either vgood or vbad
• If assigned vbad, need to also give subsidy of |V|-3
• There are |V|2 vertex agents of type v but only |V| vgood houses (some are already 

taken)
• So, total subsidy is at least 𝑇 ⋅ 𝑉 ' − 𝑉 ⋅ 𝑉 %(
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• Suppose outcome (a, s) is envy-free outcome with ∑& 𝑠& ≤
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• Define T = { v ∈ V : ∃ edge agent receiving house of type vgood in a }
• Claim 1: T is a vertex cover
• Claim 2: |T| ≤ k
• For any v ∈ T,

• There is some edge agent receiving vgood (defn of T)
• Need to give vertex agent of type v either vgood or vbad
• If assigned vbad, need to also give subsidy of |V|-3
• There are |V|2 vertex agents of type v but only |V| vgood houses (some are already 

taken)
• So, total subsidy is at least 𝑇 ⋅ 𝑉 ' − 𝑉 ⋅ 𝑉 %(

Recall: Any 
agent’s 

subsidy is < 1
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• Define T = { v ∈ V : ∃ edge agent receiving house of type vgood in a }
• Claim 1: T is a vertex cover
• Claim 2: |T| ≤ k
• Total subsidy is at least 𝑇 ⋅ 𝑉 ! − 𝑉 ⋅ 𝑉 "#

• Suppose, for a contradiction, that 𝑇 ≥ 𝑘 + 1. Then,

• Contradiction, so 𝑇 ≤ 𝑘



Vertex cover size ≤ k ⇐ Total subsidy ≤ !
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• Suppose outcome (a, s) is envy-free outcome with ∑& 𝑠& ≤
'
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• Define T = { v ∈ V : ∃ edge agent receiving house of type vgood in a }
• Claim 1: T is a vertex cover
• Claim 2: |T| ≤ k
• Total subsidy is at least 𝑇 ⋅ 𝑉 ! − 𝑉 ⋅ 𝑉 "#

• Suppose, for a contradiction, that 𝑇 ≥ 𝑘 + 1. Then,

• Contradiction, so 𝑇 ≤ 𝑘

!
*

𝑠* ≥
𝑇 ⋅ 𝑉 + − 𝑉

𝑉 , ≥
𝑘 + 1 ⋅ 𝑉 + − 𝑉

𝑉 , =
1
𝑉
⋅ 𝑘 + 1 −

𝑘 + 1
𝑉

>
𝑘
|𝑉|

Since k < |V| - 1



Minimum-subsidy envy-free outcome is NP-hard

• Reduction from Vertex Cover
• Vertex cover size ≤ k ⇔ Total subsidy ≤ !

|#|

• Modifying "𝑢$ ℎ = 𝑢$ ℎ + 𝑐$ , for some 𝑐$ ≥ 0, does not affect envy-freeness
• So, the NP-hardness argument holds even for normalized utilities where we have 

the same value of ∑% 𝑢$(ℎ) for all agents, after accounting for the 𝑐$ ’s



Two tractable cases

1) Identical valuations / utility functions
• ui(any item) = uj(same item) for all i, j ∈ [n]
• Without loss of generality, by relabelling,

• u(h1) ≥ u(h2) ≥ … ≥ u(hm)
• Agent i is assigned the ith most valuable house within the subset of assigned houses

2) Similar number of agents and houses
• m = n + c, for some constant c ≥ 0
• Since $

% = %&'
% = %&'

' ∈ 𝑂 𝑛'  is polynomial for constant c ≥ 0, suffice 
to show that the case of m = n can be solved in polynomial time
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Tractable case 1: Identical valuations

• Observation 1: Subsidy required is exactly the sum of value 
differences to the most valuable assigned house
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Tractable case 1: Identical valuations

• Observation 1: Subsidy required is exactly the sum of value 
differences to the most valuable assigned house
• Observation 2: For any fixed “most valuable assigned house”, we 

should always assign the contiguous n-1 houses right after it
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Tractable case 1: Identical valuations

• Observation 1: Subsidy required is exactly the sum of value 
differences to the most valuable assigned house
• Observation 2: For any fixed “most valuable assigned house”, we 

should always assign the contiguous n-1 houses right after it
• Polynomial time algorithm to compute minimum subsidy allocation

1. Compute prefix sums of values so we can compute required subsidy
2. Check through all m-n “most valuable assigned house”
3. Output the best option
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Tractable case 2: m = n

• Consider weighted complete bipartite graph G
• Left partite: Agents
• Right partite: Houses
• Edge weights: ui(hj), agent i’s utility for house j
• A perfect matching corresponds to an allocation
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Tractable case 2: m = n

• Consider weighted complete bipartite graph G
• [HS19] Maximum weight perfect matching in G ⇔ Envy-freeable allocation a
• Suppose a can be made envy-free with minimum subsidy vector s
• Since m = n, any envy-free allocation is a permutation of a
• [BKNS22] (aσ, sσ) is also envy-free for any permutation σ
• Since s and sσ are just permutations, the total subsidy is the same
• Polynomial time algorithm to compute minimum subsidy allocation

1. Compute maximum weight perfect matching in G to get allocation a
2. Compute corresponding minimum total subsidy vector s in polynomial time [HS19]
3. Output (a, s)



Tractable case 2: m = n

• Consider weighted complete bipartite graph G
• [HS19] Maximum weight perfect matching in G ⇔ Envy-freeable allocation a
• Suppose a can be made envy-free with minimum subsidy vector s
• Since m = n, any envy-free allocation is a permutation of a
• [BKNS22] (aσ, sσ) is also envy-free for any permutation σ
• Since s and sσ are just permutations, the total subsidy is the same
• Polynomial time algorithm to compute minimum subsidy allocation

1. Compute maximum weight perfect matching in G to get allocation a
2. Compute corresponding minimum total subsidy vector s in polynomial time [HS19]
3. Output (a, s)

Maybe some other 
allocation has a smaller 

subsidy vector?
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1. Compute maximum weight perfect matching in G to get allocation a
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3. Output (a, s)



Conclusion and future directions

• NP-hard in general to compute minimum subsidy envy-free allocation
• 2 tractable cases
• All agents have identical utilities
• Similar number of houses and agents (m = n + c, for constant c ≥ 0)

• Conjecture: Polynomial time possible if identical preferences
• Design approximation algorithms or prove hardness?
• Other notions of fairness? Pareto efficiency?
• Strategic behavior?
• No deterministic mechanism can be strategy-proof

(See Example 5.1 in paper)
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Conclusion and future directions

• NP-hard in general to compute minimum subsidy envy-free allocation
• 2 tractable cases
• All agents have identical utilities
• Similar number of houses and agents (m = n + c, for constant c ≥ 0)

• Conjecture: Polynomial time possible if identical preferences
• Design approximation algorithms or prove hardness?
• Other notions of fairness? Pareto efficiency?
• Strategic behavior?
• No deterministic mechanism can be strategy-proof

(See Example 5.1 in paper)
Lying about own utility 

function helps



BACK UP SLIDES



Polynomial time algorithm for computing 
minimum subsidy vector
• Given allocation a = (a1, … , an), compute envy graph Ga

• Vertices correspond to agents
• Edges are directed and weighted
• Weight of edge i → j is ui(aj) – ui(ai), i.e. how much agent i envies agent j’s allocation
• Note that edge weights can be negative

• Define ℓ(i,j) as maximum weight of any path in Ga starting from i and ending at j
• Define ℓ(i) = maxj ∈ [n] ℓ(i,j)
• [HS19, Theorem 2] s = (ℓ(1), …, ℓ(n)) is the unique minimum total subsidy vector



Characterization of envy-freeable allocations

• [HS19, Theorem 1] The following are equivalent:
• Allocation a = (a1, … , an) is envy-freeable
• Allocation a maximizes utilitarian welfare across all reassignments

∑i ui(ai) ≥ ∑i ui(aσ(i)), for any permutation σ
• Envy graph Ga has no positive-weight cycles

For house allocation (m = n), the second condition 
corresponds to maximum weight perfect matching


